Three-dimensional structure of E. coil core RNA polymerase: Promoter binding and elongation conformations of the enzyme
نویسندگان
چکیده
The structure of E. coli core RNA polymerase (RNAP) has been determined to approximately 23 A resolution by three-dimensional reconstruction from electron micrographs of flattened helical crystals. The structure reveals extensive conformational changes when compared with the previously determined E. coli RNAP holoenzyme structure, but resembles the yeast RNAPII structure. While each of these structures contains a thumb-like projection surrounding a channel 25 A in diameter, the E. coli RNAP holoenzyme thumb defines a deep but open groove on the molecule, whereas the thumb of E. coli core and yeast RNAPII form part of a ring that surrounds the channel. This may define promoter-binding and elongation conformations of RNAP, as E. coli holoenzyme recognizes promoter sites on double-stranded DNA, while both E. coli core and yeast RNAPII are elongating forms of the polymerase and are incapable of promoter recognition.
منابع مشابه
Architecture and RNA binding of the human negative elongation factor
Transcription regulation in metazoans often involves promoter-proximal pausing of RNA polymerase (Pol) II, which requires the 4-subunit negative elongation factor (NELF). Here we discern the functional architecture of human NELF through X-ray crystallography, protein crosslinking, biochemical assays, and RNA crosslinking in cells. We identify a NELF core subcomplex formed by conserved regions i...
متن کاملA general view: Structure and function of the subunits of E. coli RNA polymerase
The DNA-dependent RNA polymerases are widespread throughout nature. E. coli RNA polymerase, one of the most well characterized polymerase, consists of two major forms, core enzyme with subunit stoichiometry of α2ββ' and holoenzyme which contains an additional σ subunit to core enzyme. E. coli RNA polymerase plays a central role in transcription. While the core enzyme catalyses the elongation an...
متن کاملStructure and Function of the Transcription Elongation Factor GreB Bound to Bacterial RNA Polymerase
Bacterial GreA and GreB promote transcription elongation by stimulating an endogenous, endonucleolytic transcript cleavage activity of the RNA polymerase. The structure of Escherichia coli core RNA polymerase bound to GreB was determined by cryo-electron microscopy and image processing of helical crystals to a nominal resolution of 15 A, allowing fitting of high-resolution RNA polymerase and Gr...
متن کاملIn silico Analysis and Molecular Modeling of RNA Polymerase, Sigma S (RpoS) Protein in Pseudomonas aeruginosa PAO1
Background: Sigma factors are proteins that regulate transcription in bacteria. Sigma factors can be activated in response to different environmental conditions. The rpoS (RNA polymerase, sigma S) gene encodes sigma-38 (σ38, or RpoS), a 37.8 kDa protein in Pseudomonas aeruginosa (P. aeruginosa) strains. RpoS is a central regulator of the general stress response and operates in both retroa...
متن کاملSpt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif
Spt5 is the only known RNA polymerase-associated factor that is conserved in all three domains of life. We have solved the structure of the Methanococcus jannaschii Spt4/5 complex by X-ray crystallography, and characterized its function and interaction with the archaeal RNAP in a wholly recombinant in vitro transcription system. Archaeal Spt4 and Spt5 form a stable complex that associates with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 83 شماره
صفحات -
تاریخ انتشار 1995